負の整数でわったあまり

● わり算のあまり ●

 今回は、50歳半ばをすぎた方からの質問です。

 ご本人は、

「算数・数学は、すっかり忘れていて、
とんちんかんな質問なのかもしれません。」

なんておっしゃっていますが、と〜んでもない。

 「亀(かめ)の甲(こう)より年の功(こう)」
とは、よくいったものです。
(失礼だったら、ごめんなさい!)

 さて、質問は、このホームページの、
<お勉強>の「何曜日?」にかんしたものでした。

 曜日をもとめる公式では、
わり算のあまりをもとめないといけませんでしたね。

 そこでは、負の数を正の数でわったあまりについて、
しょうかいしていました。

 でも、・・・

 
 

 ・・・(略)

 あまりはわる数より小さい、のほかにもう1つ習いましたね。

 あまり というくらいですから たりない ではこまります。

 あまりは 0以上 でした!

   (−25)÷7 = (−4) あまり 3 

 ここまでは分かりました。で、

    25÷(−7) =

 の式でつまずきました。

 −7より小さくて、0以上の数とは……

 (略)・・・

 

 いや〜、するどい質問ですね。

 だって、公式では、7でわったあまりしかいらないのに、
(−7)ならどうなるのだろう、と考えたからです。

 これって、つまずいたというよりは、
さんすう・数学ではおなじみの、
もっと広げて考えられないか、ということですね。

 


● 剰余系(じょうよけい) ●

 7でわったあまりは

     0 , 1 , 2 , 3 , 4 , 5 , 6

と7つもあります。

 これが多いというのもなんですが、
とりあえず、もっと少なくして、
これからは、3でわったあまりで考えていくことにしましょう。

 3でわったあまり・・・

 もちろん、正の整数なら、3でわったあまりは

     0 , 1 , 2 

と3つしかありません。

 これを、負の整数にも広げるとき、
なんてったって3でわるのですから、
やっぱり、あまりは

     0 , 1 , 2 

の3つしかないことにしよう、としたのです。

 つまり、正の整数も0も負の整数も、ぜ〜んぶひっくるめた整数を、
あまりで分類(ぶんるい)すると、

     0 , 1 , 2 

のどれかになるように、したかったのです。

 そうすると、たとえば5なら、

     5÷3=1 あまり 2

ですから、5 は あまりが2 に分類されます。

 それなら、(−5)はどれに分類したらよいでしょうか。

 こういうとき、さんすう・数学では、
いままでのことは、そのままでいけるように、
うまく広げようとします。

 

 

 そうすると、どんどんマイナスの方へのばしていけば、
(−5)は あまりが1 に分類されそうです。

 ・・・ということは、

     (−5)÷3=(−2) あまり 1

とするといいな〜ってことになってきます。

 


● 負の整数でわったあまり(1) ●

 それでは、いよいよ負の数でわったときのあまりです。

 たとえば、(−3)でわったあまりです。

 (−3)でわったあまりなんて、きいたこともありませんね。

 でも、いままでのことは、そのままでいけるように、
うまく広げられるのなら、それでいいのです。
 (さらに、それが役だったり、みんなが使ってくれるのなら、もっといいですね。)

 やってみましょう。

 

 そうすると、たとえば

     5÷(−3)=−1 あまり 2

となって、とってもいいですね。

 どこがいいかって?

 だって、

     5÷=1 あまり 2

ですから、でわったあまりも、(−3)でわったあまりもおなじだからです。

 それなら、これからは、
負の数でわったあまりなんて、いちいち考えなくてもすむということです。

 つまり、わりざんのあまりを考えるときは、
わる数は正の整数だけでいいってことになります。

 


● 負の整数でわったあまり(2)  ●

 さて、質問にもどりましょう。

     25÷(−7) =

でしたね。

 

 これは、

   25÷7=3 あまり 4

とおなじで、

   25÷(−7) = (−3)あまり 4

と(うまく約束すれば)なりそうです。

 

 じつは、このメールをくださった方は、
ご自分で、ちゃんと答えをみつけていらしたのです。

 
 

 ・・・(略)

 25÷(−7)=−(25÷7)=−3.57....

 あまりの部分は,−0.57...に−7をかけて4ではいけないのでしょうか?

 

 

 もちろん、4でいいですね。

 えっ、このせつめいの方が、だんぜんわかりやすいって?

 そうなると、これまでのは、長い長いまわり道だったような気もしてきます。
 でも、人生(?)、そんなものですよね〜。

 

 


HOME(もどる)

掲載内容の無断転載、転用、編集を禁じます。(c) 小林吹代
All Rights Reserved, (c)kobayashi fukiyo , 2001