計算の順序 |
|
● 計算の順序(じゅんじょ) ● 今回は、お母さんからのメールです。
加減乗除とは、 「加法(かほう)」 つまり 「たし算」 「減法(げんぽう)」 つまり 「ひき算」 「乗法(じょうほう)」 つまり 「かけ算」 「除法(じょほう)」 つまり 「わり算」 のことです。 これらのまじった計算、たとえば 1000−100×3 では、まず 100×3=300 を先に計算してから、次に 1000−300=700 とひき算をします。 これは、どうしてかということです。
● かっこ ● 加減乗除(かげんじょうじょ)のまじった計算では、 こんなことをいうと、がっかりかもしれませんが、 ほんとうは、「かっこ」を使って、 (1000−100)×3 ・・・ (1) とか、 1000−(100×3) ・・・ (2) とか書くべきでしょうが、だれだってめんどうですよね。 そこで、(2)の場合だけ、「かっこ」を省略(しょうりゃく)することにしたのです。 だったら、ひき算を先にするって約束すれば、 そうそう! そのまえに、なぜ省略なんてするのでしょうか。 もちろん、めんどうだからです。 だったら、どうせなら、使う回数の多い方を省略した方がいいですよね。 さて、毎日の生活で(?)、どちらの方をよく使いますか。 まず、(1)を使うのは、どんな場合でしょうか。 (1000−100)×3 ・・・ (1) たとえば、1000円のものを100円まけてもらって、 つぎに、(2)を使うのは、どんな場合でしょうか。 1000−(100×3) ・・・ (2)
たとえば、100円のものを3個買って、
では、どちらの方をよく使うかって? やっぱり、使う回数の問題ではなさそうです。
● かけ算 ●
小学校で、はじめて「かけ算」をならったときのことを、 それは、 100+100+100 というように、同じ数のたし算をくりかえすときに、 100×3 と約束したのです。 もちろん、100円のものを3個買うなら、その代金は 100+100+100 のはずですよね。 これを、 100×3
と約束したってことは、すでに「買い物の代金」というように、
ところで、これまでず〜っと、「ひとまとまり」にしたいときは、
ところが、かけ算っていうのは、もともと「ひとまとまり」にしたいもので、
だったら、いつでもついている「かっこ」なら、 (かなり、いいかげんなお話ですが・・・・)
● 星の王子様 ● 「星の王子様」に、こんなセリフがあります。 「たいせつなものは、目には見えないんだ。」
さて、たいせつなものでなくっても、
みえないものを見えるといったり、
じつは、この計算の順序(じゅんじょ)の問題が、むずかしく感じられるのは、 1000−100×3 ・・・ (3)
じつは、(3)の式には、「かっこ」が省略されているのです。
だから、計算の順序というよりは、
そうです! ですから、子どもさんに説明(せつめい)するときは、 「ほら、かけ算が先でしょ!」 というのではなく、 「ほら、もともとは、どこにかっこがついていたのかな?」 といってみてください。 つまり、なれるまでは、 1000−(100×3) ・・・ (2)
というように、消してしまった「かっこ」を復元(ふくげん)する
それでは、お子さまといっしょに、
掲載内容の無断転載、転用、編集を禁じます。(c)
小林吹代 |